Инвертор реактивной мощности своими руками

Инвертор реактивной мощности своими руками

Через несколько понижающих трансформаторов к потребителю поступает переменный ток, конструкция которых разделяет обмотки низкого и высокого напряжения. То есть получается так, что в трансформаторе отсутствует физический контакт между двумя обмотками, при этом ток всё равно течёт. Объяснить это довольно просто. Электроэнергия всегда передаётся через воздух, который является прекрасным диэлектриком, при помощи электромагнитного поля, составляющая которого – переменное магнитное поле. Оно регулярно пересекает обмотку, появляясь в другой, и не имеет с первой электрического контакта, наводя электродвижущую силу. Коэффициент полезного действия у современных трансформаторов достаточно велик, отсюда потеря электроэнергии сводиться к минимуму, и потому вся мощь переменного тока, который протекает в первичной обмотке, оказывается в цепи вторичной обмотки. Тоже самое происходит в конденсаторе, правда, уже за счёт электрического поля. Ёмкость и индуктивность вместе порождают реактивную энергию. Активная энергия (которой мешает возврат реактивной энергии) преобразовывается в тепловую, механическую и другую.

Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример: если на электродрели указана величина мощности в 800 Вт и cosφ = 0,8, то отсюда следует, что потребляемая инструментом полная мощность составляет 800/0,8=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

Реактивный тип нагрузки характеризуется тем, что сначала, неторое время, в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю — реактивная составляющая мощности обычно считается вредной характеристикой цепи.

Для того, чтобы компенсировать противодействие реактивной энергии, применяются специальные устанавливаемые конденсаторы. Это заставляет свести к минимуму появляющееся негативное влияние реактивной энергии. Мы уже отмечали, что реактивная мощность существенно влияет на потерю электрической энергии в сети. Потому получается, что величину той самой негативной энергии приходиться постоянно держать под контролем, и лучший для этого способ – организовать её учёт.

Там, где озабочены этой проблемой (различные промышленные предприятия) довольно часто ставят отдельные специальные приборы, которые ведут учёт не только самой реактивной энергии, но и активной её части. Учёт ведётся в трёхфазных сетях по индуктивной и ёмкостной составляющей. Обычно такие счётчики, это не что иное, как аналого-цифровое устройство, которое преобразует мощность в аналоговый сигнал, который превращается в частоту следования электро-импульсов. Сложив их, мы можем судить о количестве потребляемой энергии. Обычно счётчик сделан из пластмассового корпуса, где установлены 3 трансформатора и блок учёта на печатной плате. На внешней стороне располагается ЖК экран или светодиоды.

Предприятия в настоящее время всё чаще ставят универсальные счётчики учёта электроэнергии, которые измеряют количество как активной, так и реактивной энергии. Более того, такие приборы могут совмещать функции от двух, а иногда и более устройств, что позволяет снижать затраты на обслуживание и позволяет сэкономить во время покупки. Такие устройство способны вычислять реактивную и активную мощность, а также измерять мгновенные значения напряжений. Счётчик фиксирует, каков уровень потребления энергии и показывает всю информацию на дисплее 3-мя сменяющимися кадрами (индуктивная составляющая, ёмкостная составляющая, а также объём активной энергии). Современные модели позволяют передавать данные по ИК цифровому каналу, защищены от магнитных полей, хищения энергии. Более того, мы получаем более точные измерения и малое энергопотребление, что выгодно отличает новые модели от предшественников.

Возможности компенсации реактивной энергии в быту с помощью Saving Box

Рекламные трюки продавцов бытовой техники для экономии электроэнергии

Навязчивая реклама в интернете и даже на государственных каналах телевидения через телемагазин настойчиво предлагает населению устройство для экономии электроэнергии в виде «новинок» электронной промышленности. Пенсионерам предоставляется скидка 50 % от общей стоимости.

«Saving Box» — так называется один из предлагаемых приборов. О них уже писалось в статье «Приборы для экономии электроэнергии: миф или реальность?». Пришла пора продолжить тему на примере конкретной модели, объяснив более подробно:

что такое реактивное сопротивление;

каким образом создается активная и реактивная мощность;

как осуществляется компенсация реактивной мощности;

на основе чего работают компенсаторы реактивной мощности и устройство для экономии электроэнергии.

Людям, купившим такое устройство, приходит по почте посылка с красивой коробочкой. Внутри расположен элегантный пластмассовый корпус с двумя светодиодами на лицевой стороне и вилкой для установки в розетку — с обратной.

Чудо-прибор для экономии электроэнергии (для увеличения нажмите на рисунок):

На приложенной фотографии показаны заявленные производителем характеристики: 15000 Вт при напряжении в сети от 90 до 250 В. Оценим их с точки зрения электрика-практика по приведенным под картинками формулам.

При наименьшем указанном напряжении такое устройство должно пропускать через себя ток 166,67 А, а при 250 В — 60 А. Сравним полученные расчеты с нагрузками сварочных аппаратов переменного напряжения.

Ток сварки для стальных электродов диаметром 5 мм составляет 150÷220 ампер, а для толщины 1,6 мм достаточно — 35÷60 А. Эти рекомендации есть в любом справочнике электросварщика.

Вспомните вес и габариты сварочного аппарата, который варит электродами 5 мм. Сравните их с пластмассовой коробочкой, величиной с зарядное устройство мобильного телефона. Подумайте, почему от тока 150 А плавятся стальные электроды 5 мм, а остаются целыми контакты вилки этого «прибора», да и вся проводка в квартире?

Читать еще:  Алюминотермитная сварка рельсов технология

Чтобы понять причину такого несоответствия, пришлось вскрыть корпус, показав «внутренности» электроники. Там кроме платы для подсветки светодиодов и предохранителя размещена еще одна пластиковая коробочка, для бутафории.

Внимание! В этой схеме отсутствует устройство для экономии электроэнергии или ее компенсации.

Неужели обман? Попробуем разобраться с помощью основ электротехники и действующих промышленных компенсаторов электроэнергии, работающих на предприятиях энергетики.

Принципы электроснабжения

Рассмотрим типовую схему подключения к генератору переменного напряжения потребителей электричества, как маленький аналог питающей электросети квартиры. Для наглядности его характеристик индуктивности, емкости и активной нагрузки показаны обмотка трансформатора, конденсатор и ТЭН. Будем считать, что они работают в установившемся режиме при прохождении по всему контуру тока одной величины I.

Электрическая схема (для увеличения нажмите на рисунок):

Здесь энергия генератора с напряжением U распределится составными частями на:

обмотку индуктивности UL;

обкладки конденсатора UC;

активное сопротивление ТЭН UR.

Если представить рассматриваемые величины векторной формой и выполнить их геометрическое сложение в полярной системе координат, то получится обыкновенный треугольник напряжений, в котором величина активной составляющей UR по направлению совпадает с вектором тока.

UХ образован сложением падений напряжений на обмотке индуктивности UL и обкладках конденсатора UС. Причем это действие учитывает их направление.

В итоге получилось, что вектор напряжения генератора U отклонен от направления тока I на угол φ.

Еще раз обратите внимание на то, что ток в цепи I не меняется, он одинаков на всех участках. Поэтому разделим составляющие треугольника напряжений на величину I. На основании закона Ома получим треугольник сопротивлений.

Общее сопротивление индуктивности XL и емкости ХС принято называть термином «реактивное сопротивление» Х. Приложенное к клеммам генератора полное сопротивление нашей цепи Z состоит из суммы активного сопротивления ТЭН R и реактивного значения Х.

Выполним другое действие — умножение векторов треугольника напряжений на I. В итоге преобразований формируется треугольник мощностей. Активная и реактивная мощность у него создают полную приложенную величину. Суммарная энергия, выдаваемая генератором S, расходуется на активную Р и реактивную Q составляющие.

Активная часть расходуется потребителями, а реактивная выделяется при магнитных и электрических преобразованиях. Емкостные и индуктивные мощности потребителями не используются, но нагружают токопроводы с генераторами.

Внимание! Во всех 3-х прямоугольных треугольниках сохраняются пропорции между сторонами, а угол φ не меняется.

Теперь будем разбираться, как проявляется реактивная энергия и почему счетчики бытовые ее не учитывали.

Что такое компенсация реактивной мощности в промышленности?

В энергетике страны, а более точно — государств целого континента, производством электричества занято огромнейшее число генераторов. Среди них встречаются как простые самодельные конструкции мастеров-энтузиастов, так и мощнейшие промышленные установки ГЭС и атомных станций.

Вся их энергия суммируется, трансформируется и распределяется конечному потребителю по сложнейшим технологиям и транспортным магистралям на огромные расстояния. При таком способе передачи электрический ток проходит через большое количество индуктивностей в виде обмоток трансформаторов/автотрансформаторов, реакторов, заградителей и других устройств, создающих индуктивную нагрузку.

Воздушные провода, а особенно кабели, создают в цепи емкостную составляющую. Ее величину добавляют различные конденсаторные установки. Металл проводов, по которым протекает ток, обладает активным сопротивлением.

Таким образом, сложнейшая энергетическая система может быть упрощена до рассмотренной нами схемы из генератора, индуктивности, активной нагрузки и емкости. Только ее необходимо еще объединить в три фазы.

Задача энергетики — дать потребителю качественное электричество. Применительно к конечному объекту это подразумевает подачу на вводной щиток электроэнергии напряжением 220/380 В, частотой 50 Гц с отсутствием помех и реактивных составляющих. Все отклонения этих величин ограничены требованиями ГОСТ.

При этом потребителя интересует не реактивная составляющая Q, создающая дополнительные потери, а получение активной мощности Р, которая совершает полезную работу. Для характеристики качества электричества пользуются безразмерным отношением Р к приложенной энергии S, для чего применяется косинус угла φ. Активную мощность Р учитывают все бытовые электрические счетчики.

Устройства компенсации электрической мощности приводят в норму электроэнергию для распределения между потребителями, уменьшают до нормы реактивные составляющие. При этом также осуществляется «выравнивание» синусоид фаз, в которых убираются частотные помехи, сглаживаются последствия переходных процессов при коммутациях схем, нормализуется частота.

Промышленные компенсаторы реактивной мощности устанавливаются после вводов трансформаторных подстанций перед распределительными устройствами: через них пропускается полная мощность электроустановки. Как пример, смотрите фрагмент однолинейной электросхемы подстанции в сети 10 кВ, где компенсатор принимает токи от АТ и только после его обработки электричество поступает дальше, а нагрузка на источники энергии и соединительные провода уменьшается.

Промышленные компенсаторы электроэнергии в сети 10 кВ:

Вернемся на мгновение к прибору «Saving Box» и зададим вопрос: как он может компенсировать мощности при расположении в конечной розетке, а не на вводе в квартиру перед счетчиком?

Смотрите на фото, как внушительно выглядят промышленные компенсаторы. Они могут создаваться и работать на разной элементной базе. Их функции:

плавное регулирование реактивной составляющей с быстродействующей разгрузкой оборудования от перетоков мощностей и снижения потерь энергии;

повышение динамической и статистической устойчивости схемы.

Выполнение этих задач обеспечивает надежность электроснабжения и уменьшение затрат на конструкцию тоководов нормализацией температурных режимов.

Что такое компенсация реактивной мощности в квартире?

Электроприборы домашней электрической сети также обладают индуктивным, емкостным и активным сопротивлением. Для них справедливы все соотношения рассмотренных выше треугольников, в которых присутствуют реактивные составляющие.

Только следует понимать, что они создаются при прохождении тока (учитываемого счетчиком, кстати) по уже подключенной в сеть нагрузке. Генерируемые индуктивные и емкостные напряжения создают соответствующие реактивные составляющие мощности в этой же квартире, дополнительно нагружают электропроводку.

Их величину никак не учитывает старый индукционный счетчик. А вот отдельные статические модели учета способны ее фиксировать. Это позволяет точнее анализировать ситуацию с токовыми нагрузками и термическим воздействием на изоляцию при работе большого количества электродвигателей. Емкостное напряжение, создаваемое бытовыми приборами, очень маленькое, как и ее реактивная энергия и счетчики ее часто не показывают.

Компенсация реактивной составляющей в таком случае заключается в подключении конденсаторных установок, «гасящих» индуктивную мощность. Они должны подключаться только в нужный момент на определенный промежуток времени и иметь свои коммутационные контакты.

Такие компенсаторы реактивной мощности имеют значительные габариты и подходят больше для производственных целей, часто работают с комплектом автоматики. Они никак не снижают потребление активной мощности, не могут сократить оплату электроэнергии.

Читать еще:  Клей для алюминия термостойкий

Рекламируемый чудо-прибор «Saving Box» и другие аналогичные устройства не имеет ничего общего с подобными конструкциями. Как устройство для экономии электроэнергии он работать не может.

Заключение

Заявленные производителем возможности и технические характеристики «Saving Box» не соответствуют действительности, используются для рекламы, построенной на обмане.

Обществу защиты прав потребителей и правоохранительным органам давно пора принять меры к прекращению продаж в стране некачественной продукции хотя бы через государственные каналы информации.

Потребляемая активная и реактивная мощность в квартире может быть снижена при выполнении простых рекомендаций, изложенных в статье: «Как экономить электроэнергию в квартире и частном доме».

Персональный сайт

ENERGY SAVER .

FREE DOWLOAD FILE .

http://depositfiles.com/files/g9kjs1gu8

Инвертор реактивной мощности

Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 кВт. Устройство может использоваться с любыми счетчиками, в том числе с электронными и электронно-механическими, даже имеющими в качестве датчика тока шунт или воздушный трансформатор.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка. Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно четверть потребленной электроэнергии.

Теоретические основы

При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно, интеграл от неё будет иметь нулевое значение, и счетчик ничего считать не будет.

Принцип работы инвертора состоит в том, что конденсатор заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго — разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора, второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется. Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток, потребляемый из сети- почти синусоидальный, только его аппроксимирующая функция опережает по фазе напряжение. Следовательно, счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз до 90 градусов невозможно, так как фактически заряд

каждого конденсатора завершается за четверть периода сетевого напряжения, но аппроксимирующая функция тока через счетчик при правильно подобранных параметрах емкости и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии.

Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр. В этом случае питание нагрузки будет осуществляться почти правильной синусоидой.

Принципиальная схема устройства

Принципиальная схема приведена на рис.1. Основными элементами являются инверторный тиристорный мост VD 7 – VD 10 с конденсаторами C 1, С2. Тиристоры VD 7 и VD 8, открываясь поочередно, позволяют конденсаторам C 1 и С2 заряжаться от сети в соответствующие полупериоды сетевого напряжения. Тиристоры VD 9 и VD 10 предназначены для разряда конденсаторов через нагрузку.

Импульсы управления тиристорами формируются на вторичных обмотках трансформаторов Т2 и Т3 при открывании транзисторных ключей VT 1 и VT 2. Сигнал управления транзистором VT 1, соответствующий положительной полуволне сетевого напряжения, выделяется параметрическим стабилизатором VD 1, R 1 и через гальваническую развязку на оптроне ОС1 подается на базу транзистора. Транзистор открыт в течение всего времени положительной полуволны. В момент его открывания переходный процесс тока в первичной обмотке трансформатора Т2 приводит к появлению импульсов во вторичных обмотках. Эти импульсы открывают тиристоры VD 7 и VD 10. Тиристоры остаются в открытом состоянии, пока токи через них не достигнут нулевых значений. Это приводит к заряду конденсатора С1 и к разряду С2.

При появлении отрицательной полуволны сетевого напряжения транзистор VT 1 закрывается, а VT 2 открывается сигналом, выделяемом элементами VD 2, R 5 и ОС2. Работа каскада на транзисторе VT 2 в отрицательный полупериод аналогична, и приводит к открыванию VD 8, VD 9, что приводит к заряду конденсатора С2 и к разряду С1.

Блок питания транзисторных ключей и формирователей импульсов построен по простейшей схеме и состоит из трансформатора Т1, выпрямительного моста Br 1 и фильтра С3.

http://imageshack.us/f/835/022fq.jpg/

Детали и конструкция

Тиристоры VD 7- VD 10 должны быть рассчитаны на импульсный ток в открытом состоянии не менее 30 А и постоянное обратное напряжение не менее 310 В. Кроме указанных на схеме, допускается применение тиристоров КУ202К- КУ202М. Каждый тиристор должен быть установлен на радиаторе площадью не менее указанной в нижеследующей таблице.

Транзисторы VT 1, VT 2 должны быть рассчитаны на импульсный ток коллектора не менее 1 А и напряжение коллектор-эмиттер не менее 40 В. Возможно применение транзисторов КТ815, КТ817, КТ819, КТ826, КТ827 с любыми буквенными индексами.

В качестве оптронов ОС1, ОС2 можно использовать оптроны АОТ110 с любыми буквенными индексами или другие транзисторные оптроны, рассчитанные на номинальный выходной ток не менее 10 мА и напряжение не менее 30 В.

Диоды VD — VD 6 – типа КД105, КД102, КД106. Br 1- любые низковольтные выпрямительные диоды или диодная сборка на ток не менее 200 мА.

Резисторы: R 1, R 5 типа МЛТ-2, остальные резисторы типа МЛТ-0.25.

Накопительные конденсаторы С1 и С2 должны быть рассчитаны на напряжение не менее 400В. Они могут быть электролитическими, например К50-7. Их емкость выбирается в зависимости от мощности нагрузки, подключаемой к выходу устройства и должна быть не менее указанной в таблице.

Допускается применение батарей из нескольких конденсаторов, включенных параллельно. При малых нагрузках не рекомендуется завышать емкость конденсаторов, так как возрастают потери в схеме и снижается эффективность устройства.

Конденсатор С3 – любой электролитический емкостью 1000-2000 мкФ.

Трансформатор T 1 – любой мощностью около 10-20 Вт. Напряжение вторичной обмотки должно быть 12 В.

Трансформаторы Т2 и Т2 намотаны на кольцевом ферритовом сердечнике внешним диаметром не менее 10 мм. Все обмотки одинаковые и содержат по 100-200 витков провода диаметром 0.1-0.15 мм.

Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

Читать еще:  Насадка на дрель для шлифовки дерева

Наладка

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Применение плавких предохранителей – обязательно! Накопительные конденсаторы работает в тяжелом режиме, поэтому их нужно разместить в прочном металлическом корпусе.

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 0.2 А при напряжении на выходе 16 В.

Настройку схемы управления тиристорами рекомендуется выполнять при отключенной нагрузке и отсоединенных накопительных конденсаторах С1, С2.

С помощью осциллографа проверяют наличие прямоугольных импульсов на стабилитронах VD 1, VD 2. Амплитуда этих импульсов должна быть около 5 В, частота 50 Гц, скважность 1/1. Если скважность существенно отличается, то подбирают сопротивления резисторов R 1, R 5.

После этого подключают осциллограф поочередно к база-эмиттерным переходам транзисторов VT 1, VT 2. Если оптронные узлы работают нормально, то на базах транзисторов будут прямоугольные импульсы амплитудой около 1В и частотой 50 Гц. При отсутствии этих импульсов подбирают резисторы R 2, R 6.

В заключении осциллограф подключают поочередно к управляющим электродам тиристоров VD 7- VD 10 и измеряют сигналы относительно соответствующих катодов. Должны наблюдаться короткие импульсы амплитудой около 1 В, частотой 50 Гц. Если импульсы отсутствуют или их амплитуда ниже 0.7 В, увеличивают сопротивления R 17, R 18.

На этом настройку схемы управления устройства можно считать завершенной. При подключении нагрузки на выходе устройства будет напряжение, равное нулю. После подключения накопительных конденсаторов напряжение на нагрузке появится и будет иметь вид пилообразных импульсов, приведенных на рис.2. Амплитуда этих импульсов около 310 В, частота 50 Гц.

Если нагрузка допускает произвольную форму питающего напряжения (нагревательные элементы, котлы, печи, освещение лампами накаливания и т.п), тогда на этом можно закончить. Если нагрузка требует синусоидального напряжения, перед нагрузкой следует включить фильтр. Как правило, достаточно простейшего Г-образного LC -фильтра (рис.3). При индуктивности дросселя L около 20 мГн и емкости конденсатора С 100 мкФ (только неполярный!), на нагрузке мощностью 2 кВт получается синусоида с незначительными искажениями (рис.4). Такие искажения допускают практически все потребители, даже точная электронная аппаратура.

После испытания устройства под нагрузкой полезно убедиться, что ток потребления из сети опережает по фазе напряжение. Для этого потребуется двулучевой осциллограф. Последовательно с устройством следует включить малое мощное сопротивление (например, кусок спирали от электроплитки), и параллельно ему подключить один канал осциллографа для измерения тока. Второй канал осциллографа включают параллельно входу устройства, для измерения напряжения. Осциллограммы тока и напряжения должны быть смешены относительно друг друга по фазе на величину, как можно ближе к 90 градусов (рис.5). Малое фазосмещение свидетельствует о потере емкости накопительных конденсаторов С1 и С2. Полное отсутствие- о пробое силовых тиристоров или неправильной работе схемы управления.

Бытовой компенсатор реактивной мощности своими руками

В современном глобальном мире экономия энергоресурсов выходит на первое место по своей актуальности. Экономия энергии, в некоторых странах, активно поддерживается государством не только для крупных потребителей, но и для обычных обывателей. Что в свою очередь делает компенсатор реактивной мощности актуальным для домашнего применения.

Компенсация реактивной мощности:

Многие потребители, прочитав в интернете о компенсации реактивной мощности крупными заводами и фабриками тоже задумываются о компенсации реактивной составляющей у себя дома. Тем более что сейчас существует большой выбор компенсирующих устройств, применять которые можно в обыкновенном быту. О том, действительно ли существует возможность, несколько сэкономить на этом у вас дома, вы можете прочитать в этой статье. А мы рассмотрим, возможность сделать такой компенсатор своими руками.

Отвечу сразу – да, возможно. Более того, это не только дешевое, но и довольно простое устройство, однако для понимания принципа его работы нужно знать, что такое реактивная мощность.

С курса школьной физики, и азов электротехники многим из вас уже известно общие сведенья о реактивной мощности, поэтому следует перейти сразу к практической части, однако невозможно этого сделать, миновав нелюбимую всеми математику.

Итак, для начала выбора элементов компенсатора необходимо рассчитать реактивную мощность нагрузки:

Поскольку такие составляющие как напряжение и ток мы можем померять, то фазовый сдвиг мы можем замерять только с помощью осциллографа, а он есть не у всех, так что придется идти другим путем:

Поскольку мы используем самое примитивное устройство из самих конденсаторов, нам необходимо рассчитать их емкость:

Где f – частота сети, а ХС – реактивное сопротивление конденсатора, оно равно:

Конденсаторы подбираются по току, напряжению, емкости, мощности соответственно, отталкиваясь от ваших потребностей. Желательно чтобы количество конденсаторов было больше единицы, чтобы возможно было экспериментально подобрать наиболее подходящую емкость для нужного потребителя.

В целях безопасности компенсирующее устройство должно подключатся через плавкий предохранитель или автомат (на случай слишком большого зарядного тока или КЗ).

Поэтому рассчитаем ток плавкого предохранителя (плавкой вставки):

Где ів – ток плавкой вставки (предохранителя), А; n – количество конденсаторов в устройстве, штук; Qk– номинальная мощность однофазного конденсатора, кВАр; Uл – линейное напряжение, кВ (в нашем случае фазное без).

Если используем автомат:

После отключения компенсатора от сети на его зажимах будет напряжение, поэтому для быстрого разряда конденсаторов можно использовать резистор (лучше всего лампочку накаливания или неонку), подключив его параллельно устройству. Блок-схема и принципиальная схемы приведены ниже:

Блок-схема включения компенсатора реактивной мощности Продемонстрирую более наглядно

В отверстие номер один подключается потребитель, а в отверстие номер два подключается компенсатор.

Принципиальная схема компенсатора реактивной мощности Включение через предохранитель-автомат

Включается компенсирующее устройство всегда параллельно нагрузке. Данная хитрость уменьшает результирующий ток цепи, что уменьшает нагрев кабеля, соответственно к одной розетке может быть подключено большое количество потребителей или увеличена их мощность.

  1. Регулятор мощности для паяльникаПожалуй, каждый радиолюбитель задумывался о простом регуляторе мощности для своего.
  2. Блок питания с гасящим конденсаторомВполне естественно, что, как перед начинающим, так и перед опытным.
  3. Начинающим радиолюбителям, основные величины радиоэлектроникиВ этой статье приведены основные термины, правильное восприятие которых является.
  4. Перевод емкости конденсаторовКаждый радиолюбитель должен хоть не много, но разбираться в маркировке.
  5. Лазер своими рукамиМечта о маленьком карманном лазере стала реальностью с появлением и.
Ссылка на основную публикацию
×
×
Adblock
detector